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LV A NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

V 
TECHNICAL NOTE 

CALCULATION OF AERODYNAMIC FORCES ON A 

PROPELLER IN PITCH OR YAW1 

By John L. Crigler and Jean Gilman, Jr. 

SUMMARY 

An analysis has been made to determine the applicability of existing 
propeller theory and the theory of oscillating airfoils to the problem 
of determining the magnitude of the forces on propellers in pitch or yaw. 
Strip calculations including the Goldstein correction factors and using 
compressible airfoil characteristics were first made as though steady- 
state conditions existed successively at several blade positions of the 
propeller blades during one revolution.  A theory of oscillating air- 
foils in pulsating incompressible linearized potential flow was then con- 
sidered from which it was possible to determine factors which would mod- 
ify the forces as calculated under the assumption of steady-state com- 
pressible flow. 

Comparisons of the steady-state calculations with experimental 
results show that the magnitude of the force changes experienced by the 
blades can be predicted with satisfactory accuracy.  Results of calcula- 
tions made by the oscillating theory indicate that the actual forces on 
the blade may be somewhat lower than the values calculated by the steady- 
state method.  It was not possible to establish this conclusion defi- 
nitely because of the lack of sufficient experimental data for comparison. 

The turning moment on the shaft of a two-blade propeller fluctuates 
between approximately zero and its.maximum value twice per revolution. 
For the operating condition investigated the turning moment on the shaft 
of a three-blade propeller remains nearly constant at about 75 percent 
of the maximum value attained with the two-blade propeller. 

INTRODUCTION 

Large-diameter propellers incorporating thin blade sections are 
becoming a necessity for certain aircraft installations using large unit 

-•-Supersedes the recently declassified NACA RM L8K26, "Calculation of 
Aerodynamic Forces on a Propeller in Pitch or Yaw" by John L. Crigler and 
Jean Gilman, Jr.,  19^9• 
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power plants at high altitude and high speed.  On such propeller instal- 
lations, the oscillating air forces due to yaw or pitch of the propeller 
axis may cause dangerous vibratory stresses with a frequency of once per 
revolution.  The airfoil blade section experiences oscillating air forces 
that vary with the position of the blade around the periphery.  These air 
forces on the propeller blade section in flight must be related to the 
proper Mach number, advance ratio, blade-section lift coefficient, inclina- 
tion of the propeller shaft axis to its forward motion, and the wave 
length of the oscillation.  A knowledge of the air forces on the blade 
section as a function of the propeller operating conditions is needed in 
a study of the problem.  No existing theory completely describes the 
operating condition of a pitched or yawed propeller. 

In this paper the air forces on the propeller blades are calculated 
first under the assumption that the existing propeller theory may be used 
in conjunction with the instantaneous angles of attack and resultant 
velocities along the blades of the pitched propeller at successive blade 
positions around the periphery.  This method, herein termed the "steady- 
state" method, permits the use of the usual steady-state compressible 
airfoil characteristics with the Goldstein correction factors for a finite 
number of blades. Then several aspects of the nature of the forces 
developed by an oscillating airfoil are considered.  Expressions based 
on linearized theory for calculating the air forces on a two-dimensional 
thin flat-plate" airfoil oscillating in angle of attack in a steady stream 
in a nonviscous incompressible fluid were developed in reference 1.  Some 
modifications to this theory were presented in reference 2 to permit cal- 
culations when the stream velocity as well as the angle of attack varied 
with time. The expressions of reference 2 are used to estimate the changes 
of the airfoil characteristics in a compressible oscillating flow field. 

Very little experimental data with which to compare the results of 
these calculations are available. The steady-state compressible charac- 
teristics are computed for the propeller tested in reference 3, however, 
and are compared with the experimental data given therein.  The calcu- 
lations are made for two-blade and three-blade single-rotating propellers 
and satisfactory agreement with the available experimental data is 
obtained. 

SYMBOLS 

a distance to center of rotation from midchord of airfoil, 
feet (fig. 2) 

B number of blades 

c chord, feet 
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C(j profile drag coefficient 

cz two-dimensional lift coefficient 

C(k)  = F +  iG C    function  (reference  l) 

CT thrust  coefficient 
pn2D^ 

 _ plpmpnt.   +.1rriia+.   cnoffir-ion+     ( ' 

\pn2D^ 
dx 

element thrust coefficient 

<1CT\                            •     ^     ^                                                                                /dTmt/ _      ) mat.anT.nnpniis   plprapnt.   +.TTTHQ+.   fnpffnVipn+      / ~u'_ 
dX^0Dt 

instantaneous element thrust coefficient 
dTm+ /dx\ 

pn2DV 

D propeller diameter, feet 

h vertical deflection  (flapping)  of airfoil,   feet   (fig.   2) 

J advance ratio  (v/nD) 

J(üt local advance ratio, steady part  (J cos CüJ) 

, ItX   COS    dm 
Jüüt instantaneous  local advance ratio 

I— + sin CLSin cut; 

^oüt' ^P' k*1   parameter used in determining the function F +- iG 

k =   CDC 

2W0 

(JÜC 

Hot+ ^p = w; = kl 

L lift,  pounds 

lift coefficient of oscillating airfoil 

o«        p¥°2 
2rctp 

m 

0     2 

turning moment,  foot-pounds 



nie moment coefficient ' 
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,pV2D3, 

M Mach number 

n propeller rotational speed, revolutions per second 

r radius to blade section, feet 

R tip radius 

t time, seconds 

T thrust, pounds 

Tyjt instantaneous thrust, pounds 

V forward velocity of airplane, feet per second 

wo geometric resultant velocity, steady part, feet per 
second (fig. 1) 

W(üt instantaneous geometric resultant velocity, feet per 
second 

x fractional radius to propeller blade section [ - 1 
w 

x0 radius ratio at spinner juncture 

a angle of attack, degrees 

oti angle of inflow, degrees 

ap amplitude in oscillation of angle of attack, radians or 
0 degrees (fig. 1) 

Op instantaneous incremental angle of attack of blade sec- 
tion, radians or degrees 

cu angle of inclination of propeller thrust axis, degrees 
(fig.   1) 

ß blade-angle setting at O.75 radius,  degrees 
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7 = tan-1 -^ 
c2 

CD 

 max _ 2.] 
¥o    ; 

Goldstein correction factor for finite number of blades 

mass density of air, slugs per cubic foot 

section solidity (   

local geometric helix angle, steady part, degrees 

(tan-1 ± cos a^J 

Past instantaneous geometric helix angle, degrees 
COS OCfp 

/tan" -1- 
— + sin a*psin tot 
J 

aerodynamic helix angle, degrees (equation (k)) 

angular velocity of propeller, radians per second 
(2Ttn) 

A dot over a quantity denotes the first derivative of the quantity 
with respect to time; two dots, the second derivative with respect to 
time. 

FORCES ON AW INCLINED PROPELLER 

The Velocity Diagram 

Figure 1(a) shows a side view of a propeller disk, the thrust axis 
of which is inclined at an angle ccj to the forward velocity V.  This 

forward velocity V is shown resolved into a component V cos CL per- 

pendicular to the plane of rotation and a component V sin a  parallel 

to the plane of rotation.  Figure l(b), a view perpendicular to the plane 
of rotation along'the thrust axis, shows the velocity component V sin CL 
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at a section of a propeller blade which is  located at a position    cut    on 
the propeller disk.     In this paper the time variable    cut, which defines 
the position of the blade,   is  considered to be  zero when the blade   is 
initially vertical upward with the propeller axis   in positive pitch and 
is measured in the direction of rotation  (these axes may be rotated to 
comply with propeller attitudes  other than pitch).     With this  convention 
the vector    V sin CL    may be resolved into a component    V sin oLsin cut 

in the direction of the tangential velocity    cur    and a component 
V sin a^cos cut    in a radial direction along the blade.     In the treatment 

that follows, the radial component of the flow   (V sin OLCOS cut)   is assumed 

to have a negligible effect on the airfoil characteristics.     With this 
assumption,  the effect of the periodic change   in the rotational velocity 
(nriDx + V sin cc^sin cut\ and the component velocity    V cos OL    on the 

propeller characteristics remain to be determined. 

The vector diagram for a section of an inclined propeller is shown 
in figure l(c).  In this figure the induced effects are not included. 
It should be realized, however, that the aerodynamic helix angles will 
be somewhat different from the geometric helix angles shown.  From fig- 
ure l(c) the geometric helix angle for any position of the propeller 
blade is given by 

, V cos c^ 
0cut = tan 

imDx + V sin cLsin cut V 

or 

-1 uua   um 

0cut = tan       ^  (1) 
~ + 3in cy 

'Cut roc 
+ sin CLsin cut 

The resultant velocity is  given by 

Wcut yV CO3
2

CL +   (JTTLDX + V sin 0.^3in cut") (2) 
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From the relationship in equation  (l),  the local advance ratio is  given 

TtX   COS   CL 

■W - « ; ^  (3) 
—• 4- sin a sin cut 
J T 

From equation (3), the local advance ratio is seen to vary depending on 
the position of the blade. 

Method of Analysis 

In calculating the forces on an inclined propeller it must be real- 
ized that not only do the blade sections operate in a variable flow field 
but that the flow is a compressible one with the possibility of high 
section Mach numbers along the propeller blades.  The method of refer- 
ence 2 for dealing with the oscillating effects applies to incompressible 
flow where the slope of the lift curve is approximately 2it,  while in 
the compressible case/ the slope may be considerably higher.  Since the 
wave length in oscillating flow is usually several blade chords (10 or 
more), it appears logical as a first approximation to consider the oscil- 
lating effects to be negligible as compared with the change of slope of 
the lift curve with change in Mach number. Also, the Goldstein correction 
factors for a finite number of blades have been found to apply reason- 
ably well when applied to the calculation of forces on nonoptimum pro- 
pellers (reference k).     Therefore, it appears reasonable to extend their 
use to the present case. 

Steady state.- In steady-state calculations of the forces and 
moments on the blade of a pitched propeller, a change in time (blade 
position) is treated simply as a change in the operating V/nD of the 
propeller in accordance with equation (3).  The complete propeller is 
assumed to operate successively at different blade positions under the 
instantaneous conditions at each particular position. The thrust per 
blade at each position is determined from 

Toft _ pn2p^ r1'0/^ 
B     B  JXQ Vdx/^ 

■        dx (10 
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Vdx/üjt 
=    KTtPx^ 

a,- cot  0 -  tan 7 
57.3   /   .   d        ai 

'cot 0 + 
57.3, 

1 + -Ü- sin 
JtX ^T"p sin cut t>        (5) 

Equation  (5),  except for the  factor   ll -t- — sin a„sin J cut IS 

from reference k.    The  quantities    0    and    a-^    are determined by the 
same method as  in reference h by using the  quantity    J^     (equation  (3)) 

/        j \? 
in place  of    J.     The additional factor    If — sin a sin cot)       in equa- 

\   itx     T    / 

tion (5) is needed to put the element thrust gradient 
dCT 

"dx" 
in terms of 

pn2D^ rather than in terms of the apparently varying n in J^ 

(equation (3)). 

The turning moment (yawing moment of a pitched propeller on the 
propeller shaft) is the difference in bending moments from the highly 
loaded side to the lightly loaded side of the inclined propeller.  For 
the steady-force calculations this bending moment reaches a maximum on 
the two-blade propeller when the blades are in the horizontal plane. The 
maximum turning moment from the steady-flow calculations is found by 
graphically integrating 

xRpn2D^ 
dCT 
dx 90 

dCrj 

"dx 270 
dx (6) 

from the spinner surface to the propeller tip. 

Oscillating flow.- The expression for the total lift of an infinitely 
thin airfoil of infinite aspect ratio oscillating in an incompressible 
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pulsating stream  (see fig.   2)   is  given by equation  (12)  of reference 2 
(with suitable changes   in notation)  as 

where 

■ np 1 + WaA + Wa)t(a + aT>)   ~ a I Sp 

2«PW05t   S-IV+   ^O^ (kWmt )e
1CDt   + 

2V2 op + w^ -(%)+ kw+ 

■Vp^+ v)6^} (7) 

wajt - wo = woee iujt 

h = h0eü»t 

ap = cop e loot 

C(k)  = F +  ±Q (see reference l) 

In the preceding expressions, e  denotes the fractional amplitude of 
the perturbation part of the stream pulsations, h0 the amplitude of 

the vertical displacement (flapping), and ap  the amplitude of the incre- 

mental angle of attack due to the rotation of the airfoil about the 
point a. The equations defining the quantities (V^ •- w\ f  h, and ap 

describe these quantities as pure sinusoidal variations; it thus becomes 
necessary to ascertain the applicability of these definitions to the 
inclined propeller case. . . 
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Figure 1 shows that the maximum increment in the geometric angle 
of attack occurs at the quantity sin cut = 1 (cot = 90°) and at 
sin cut = -1 (cot = 270°).  The amplitude aP  of the geometric angle 

of attack at cut = 90° is 

0o - 0 90 = tan_1 i[ cos «T tan -1 cos °T 
JOC 

+ sin ^"p 

and the amplitude at cut = 270° is 

^270 - 0o = "tan"1 
cos CXip 

roc 

J 
sin °T 

,  -1 J tan  — cos CL„ 
JtX      T? 

These values have been calculated for several values of — with the 
itx 

angle o^ as parameter, and the results are shown plotted in figure 3. 

In figure k  are shown results of similar calculations made to determine 
the value of e at cut = 90° and cut = 270°. Figures 3 and k  show that 
in the propeller case the deviation from sinusoidal variations in the 
resultant velocity and angle of attack is small at thrust-axis angles 

less than about 6 and values of — less than approximately 2. 

The flapping motion h is a function of the blade stiffness and 
will not be considered here.  Calculations show that the effect of this 
motion on the maximum force is in general small but that the lag in the 
position of the maximum force may become large depending on the frequency 
of the oscillations. 

When the h terms are dropped, equation (7) reduces to 

L = -rrp -1- 
k 

Wcutap + W^a + ap) 2*PWcut 2 W0a + (W(üt - W0)aß(Vt
S 

f ap + W^C^) + (WQt - W0)apC(kW(üt + k^J (8) 
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y 

< For the type of motion being considered it will be convenient to 
^      assign the following values to the parameters appearing in equa- 

tion (8): 

ot-p = -lccp e ro 

h = 0 

W03t W0(l - ice***) 

w
9o € = — - 1 
w wo 

C(k) = F + iG 

In the preceding expressions the parameter Op  is taken as the ro 
amplitude of the aerodynamic angle of attack as estimated by steady- 
state calculations in potential flow. The function C(k)  is a complex 
function of the parameter k (reference 1) and is given by 

C(k) = F(k) + iG(k) 

where F and G are obtained from standard Bessel functions of the 
first and second kinds with argument k. The variation of the functions 
F and G with the parameter l/k is given in figure k  and table II 
of reference 1.  In the present case the functions F and G are eval- 
uated as in reference 2 for k*s defined as follows: 

., C^t 
Xrt   2W0 
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V " "2WÖ" 

KW, cot ^ 
Kt+ %)c 

2W_ 

For the case being considered it is assumed that civ,  = cu =  cu; there- 
cut    r 

fore, kw^ = k^ = k and k^ + ^ = kx = 2k. Accordingly, the 

functions Crkw ) and cP<t, ) are equal and are denoted by C(k) = F + iG 

while the function c/ky  + *Sx ) is denoted by Fj_  + IG^. 

It should be noted that some of the real terms in equation (8) are 
not multiplied by the C(k)  functions.  These real terms can be inter- 
preted as giving the total force on the airfoil and the imaginary terms, 
the force due to perturbation velocities only. 

When the real part of equation (8) is taken, the resulting total 
force coefficient is given by 

L„  = 

2rtap      c 

a 
<Xp 

F/l +  e 
a 

CCr 

k n a - G + e   
2 a.p 

sin cot + 

k,1 + l) + G(1 + 6^pH + Gi 1 in 2 cut  -   e F^sin  3cut + 

2V apJ I aP. 
cos cut 

F/l   +   6 a 
CXr 

|G + FX cos  2cut - e^G-|_cos  3a& (9) 
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The lift-force coefficient Lc for propeller-blade computations 
applies to only one blade element.  If the curves from all blades are 
plotted and integrated and the ordinates summed, the curves thus obtained 
may be used to determine the turning moment on the propeller shaft as a 
function of time. The turning moment on the shaft (yawing moment for 
pitched propeller) for any position is found by plotting the lift force 
at each blade element times its moment arm and integrating graphically. 

CALCULATION OF FORCES AND DISCUSSION OF RESULTS 

Steady state.- The calculations were made for a k-foot-diameter 
propeller having an NACA k-(3.9)(07)-03^5-B blade design of NACA l6-series 
sections.    A description of the propeller and blade-form curves  is  given 
in reference 3-    The calculations made,  assuming steady flow, were  for a 
two-blade propeller for blade angles of 26° and 53° measured at the 0.75 
radius, for a free-stream Mach number of 0.30, and for the propeller 

thrust axis inclined at an angle of 1+°. For each operating condition of 
the propeller there is a variation of Mach number along the blade which 
must be taken into account. The airfoil data used were taken from refer- 
ence 5 but, since the highest Mach number covered in the report was 0.7, 
extrapolation of the airfoil data to Mach numbers as high as 0.9 was 
necessary. The lift characteristics for a Mach number of 0.6 were used 
to extrapolate to higher Mach numbers. The extrapolation was made by 
holding the angle of zero lift obtained at M = 0.6 constant and 
changing the slope of the lift curve by the Prandtl-Glauert relationship 

^ (0.6); 

da/M=o.6 sfc-^ 

Figure 5 gives a comparison of the variation of the calculated and 
the wake-survey thrust coefficients with respect to the blade position 
cut    at    J = 1.2    for a blade-angle setting of 26° and a thrust-axis 

angle    oc^    of ^°.    Figure 6 gives a similar comparison at    J = 2.8, 

ß = 53°,  and    c^ = h°,  and figure 7 at    J = 3.1    for    ß = 53°    and 

a— = k°.    The maximum and minimum calculated instantaneous thrust coef- 

ficients  differ slightly from the measured values  in all cases.    There 
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is also a rather large phase difference in the position of the maximum 
calculated and measured thrust coefficient at the value J = 1.2. The 
position of the survey rake for the experimental data of reference 3 
was changed to get each individual point rather than making simultane- 
ous measurements of a number of points for each particular operating 
condition. 

At the same time that the "experimental rake survey data were taken 
force-test thrust coefficients were measured. A study of these data 
revealed that the force-test thrust coefficients CT at the operating 
V/nD of 1.2 for the 26° blade-angle setting varied from CT = 0.0125 

to CT = 0.0170 depending on the position of the survey rake. The 

force-test thrust coefficient for the condition of V/nD of 2.8 and 

the blade-angle setting of 53° varied from O.O725 to 0.0800. This change 
in thrust coefficient with rake position suggests that there is a 
blocking effect which changes with rake position. This blocking effec- 
tively changes the velocity in the plane of the propeller and thus the 
operating V/nD of the propeller.  Therefore comparisons made at the 
same V/nD with theoretical calculations based on free-air conditions 
would not be expected to be in exact agreement.  With this consideration 
in mind the agreement between experiment and theory is good. 

The shift in the position of the maximum force between the experi- 
mental and calculated data noted particularly in figure 5 is due to 
several factors.  First, the survey rake for the experimental data was 
l8 inches (0.375 propeller diameter) behind the center line of the pro- 
peller.  Calculations showed that, in this distance, the twist of the 

propeller slipstream accounted for approximately 12° shift of the maximum 

force for the operating condition of — =1.2 and ß = 26° but was 
nD 

V 
negligible for the operating condition of — =3.1 and ß = 53°. 

nD 
Second, the unsteady flow on the blade sections causes a lag in the 

forces (about 5°) which means that the maximum force does not occur on 
the horizontal as would be indicated from steady-flow calculations. This 
lag in the position of the maximum force is a function of the frequency 
of the oscillation and decreases with the propeller rotational speed, 
which means that it would decrease as the V/nD is increased for con- 
stant forward speed. Third, the inclusion of the flapping of the blade 
section in the calculations causes an additional lag in the position of 

the maximum force (about l6°). 

Figure 8 shows  calculated differential thrust-coefficient curves of 
a two-blade propeller for three blade positions  for the 26° blade-angle 
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setting operating at a V/nD of 1.2 and with the thrust axis inclined 

k    to the air stream. The experimental curves for two positions for a 

30 lag in phase angle are shown for comparison. The calculated distri- 
bution of thrust coefficient with radius is in good agreement with the 
experimental distribution. \ 

Forces computed by oscillating-airfoil theory.- Figures 9 to 12 
show the results of some of the calculations made for an oscillating air- 
foil in a pulsating flow field in incompressible flow.  The results for 
all the curves in these figures apply to any particular blade section. 
The total force on the propeller blade for any blade position is found 
by summing up the forces along the blade. 

The variation of Lc with oat is shown in figure 9 at e■ = 0.10 
for several values of k with the steady part of the angle of attack a 
equal to zero.  In any particular case, the quantity k is fixed by the 
operating conditions of the propeller and by the blade chord.  Inter- 
preted physically, the quantity l/k is a measure of the wave length 
between successive waves in the vortex wake in terms of the half-chord; 
in the steady-state calculations this wave length is arbitrarily assumed 
to be very large with respect to the chord. Thus, in figure 9 the curve of 
Lc against mt at k = 0 shows the results obtained for assumed steady- 
state conditions in potential flow. The curves in figure 9 for other 
values of k show that the effect of the oscillations is to modify the 
forces as obtained from the assumption of steady-state conditions. Pre- 
sumably, a similar effect would occur in a compressible flow. 

The asymmetry of the curves for Lc  in figure 9 is caused prima- 

rily by the variation in the dynamic pressure -ipW^t2 during the cycle. 

This asymmetry may be also seen in figure 10, which shows the. variation 
at k = 0.10 of Lc with cot with e as parameter for several values 
of a/cxp^. The curves for e = 0 are the most nearly symmetrical; this 

condition corresponds to Theodorsen's case of an airfoil oscillating in 
a steady flow (reference l). . It can be seen from figure 10 that the 
amplitude of the lift variation tends to increase as e increases and 
also that this amplitude increase is further accentuated by increasing 

the initial load at cot = 0 /'a/ccp  increasing"). Figure 11 shows' the 

variation of the force coefficients for cot = 90° and for cut = 270° 

for several values of e for -^ = 0.  In the same figure are values 

of (Lc90 " Lc27o) which are a measure of the maximum bending moment on 
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the shaft axis of a two-blade propeller (divided by 2 for convenience of 
plotting).  The absolute magnitude of the maximum force coefficients 
varies greatly as the value of e  is increased, but the variation of 
the difference in the forces from the heavily loaded side to the lightly 
loaded side which gives the bending moment is small. 

Figure 12 shows the variation of Lc at 90° and 270° with k at 

several values of cc/ctp  with e = 0.  In this special case it is seen 

that the magnitude of the loading increases as a/dp  is increased but 
/  ° 

L-  - L_ 
90    270 

that the bending load factor  ■— is independent of initial 
2 

loading on the blade section. This independence does not hold in a 
pulsating flow field a3 may be seen in figure 13, which shows the vari- 

L_  - L_ CQ0   c270 
at ion of the bending load factor —- !— with k at several 

values of e a 
<xp ro 

Figure 1^ shows the variation in the turning-moment coefficient 
on the inclined propeller shaft (yawing moment for pitched propeller) of 
the NACA I4--(3.9) (07)-03lt5-B propeller. These coefficients were calculated 
by the oscillating-flow theory and are considerably lower than the moments 
calculated by assuming steady-state conditions at each phase angle and 
using compressible airfoil characteristics. The curves are only useful 
in showing the variation of the moments with the time variable at and 
not the absolute magnitude. The variation of the turning-moment coef- 
ficient with time for a two-blade propeller operating at a V/nD of 1.2, 

a_ = k°,  and ß = 26° is shown by the solid curve and for a three-blade 

propeller by the dashed curve.  It is seen that the moment coefficient 
for a two-blade propeller varies from approximately zero when the blades 
are in the vertical position to a maximum of 0.0021 when the blades are 
approximately on the horizontal (twice per revolution). For the same 
operating condition for the three-blade propeller the moment coefficient 
remains very nearly constant at approximately 0.0016 (varying between 
0.0015 and 0.0017). 

Combined steady and oscillating forces.- From the standpoint of 
theory a combination of the steady-state and the oscillating-airfoil 
theories approaches the actual operating conditions of the pitched or 
yawed propeller. The forces or moments are computed by the steady-state 
methods including compressibility and downwash. The oscillating-airfoil 
theory is then used to modify these forces.  For a two-blade propeller, 
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the maximum force difference (LQ0 - ^21o)  at each  3ec"tion as computed 

from steady-state calculations with compressible airfoil characteristics 

would be reduced by a factor which is the ratio of (L„  - L„  ) at 
\ c90   c270/ 

the operating values of k to its value at k = 0 (from fig. 13). From 
figure 13 it will be noticed that, properly, the operating value of 

should also be taken into account; within the limits given in the 
(Xp ro 

, c9o "   c27oyir 
figure, however, the ratio -j> / &  changes only slightly 

with e a 
CCp ro 

Co.   JC^o)k=c 
;90   2T0i 

Figure 15 shows the calculated distribution of the moment coefficient 
along the radius for the two-blade NACA 4-(3.9)(07)-0345-B propeller with 
the blades in the horizontal position, with the thrust axis inclined at 

h°,  with the propeller blade angle set at 26° at the 0.75 radius, and 
operating at a V/nD of 1.2.  The moment coefficients are computed for 
steady-state conditions in compressible flow and for an oscillating air- 
foil by the oscillating-airfoil theory.  An integration of these curves 
gives the total turning moment on the propeller shaft.  The correction 
for each radius as obtained from figure 13 has been applied to the steady- 
state calculations. This correction does not bring the curves into agree- 
ment because of the differences in the airfoil characteristics used. 

CONCLUSIONS 

Methods have been developed to determine the air forces acting on 
yawed or pitched propellers.  At the present time the lack of extensive 
experimental data precludes conclusive verification of the theoretical 
considerations presented in this paper, particularly in regard to the 
applicability of the combined steady-state compressible and oscillating 
incompressible theory.  The comparisons and calculations made, however, 
indicated the following conclusions: 

1. The steady-state method for calculating the propeller forces 
gives satisfactorily accurate results. 

2. The results from the oscillating-flow theory indicate that the 
actual forces on the blade are somewhat lower than the values calculated 
by the steady-state method, particularly at low advance ratios. 
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3. The turning moment on the shaft of a two-blade propeller fluctu- 
ates between approximately zero and its maximum value twice per revolu- 
tion. 

k.  For the operating condition investigated the turning moment on 
the shaft of the three-blade propeller remains nearly constant at about 
75 percent of the maximum value attained with the two-blade propeller. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., December 20, 19^8 
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